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A two-scale asymptotic analysis coupled with the spatially periodic fundamental solu-
tions are used for analyzing diffraction of elastic bulk waves propagating in anisotropic
media containing periodic inclusions or voids. Explicit equations are derived for the
scattering cross sections and velocities of bulk waves propagating in spatially periodic
media with arbitrary elastic anisotropy.
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1. Introduction

A theoretical method based on the two-scale asymptotic expansions and spatially
periodic fundamental solutions is applied to the analysis of energy variation and
diffraction of elastic waves propagating in a heterogeneous anisotropic elastic medium
containing periodically distributed anisotropic inclusions or voids. The considered
heterogeneous medium is modeled by the deterministic approach utilizing a regular
spatial lattice with inclusions located in the corresponding nodes. The considered
medium with inclusions can have different kinds of lattices, each having inclusions
of specific geometry and orientation placed at the corresponding nodes.

It is assumed that both medium and inclusions are elastically anisotropic with
no restrictions imposed on the kind of elastic anisotropy. It is also assumed that
the displacement and strain fields are infinitesimally small, so equations of linear
elasticity can be applied.
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The closest solutions in mechanics of heterogeneous media with inclusions can
be obtained by application of the two-scale asymptotic analysis [1 – 3]. In this
method it is assumed that two fields exist: (i) the global field that can be described
by “slow” variables; and, (ii) the local field, having high frequency oscillations; this
rapidly oscillating field can be described by “fast” variables.

In the two-scale asymptotic methods the effective elasticity tensor can be rep-
resented in a following form:

C0 =
N∑

p=1

fpCp +K
N∑

p=1

fp = 1 (1)

where C0 is the effective elasticity tensor, fp is the volume fracture of the p-th
component, Cp is the elasticity tensor of the p-th component, N is the total number
of different components of the heterogeneous medium, and K is a correcting tensor,
or “corrector”. The main difficulty lies in finding the corrector.

Remark : Equation (1) covers almost all existing methods of homogenization by
choosing different expressions for the corrector:

a) At K = 0 expression (1) yields Voigt’s homogenization.
b) Taking:

K =
N∑

p=1

−fpCp +

(
N∑

p=1

fpC
−1
p

)−1

(2)

and assuming that at any p tensors Cp are invertible along with
(
fpC

−1
p

)
, Eqs.

(1) and (2) yield Reuss homogenization. Assumption that tensors Cp are invertible
at any p is not valid for media with pores; in this case the Reuss homogenization
cannot give a non-trivial solution for the homogenized elasticity tensor.

Determination of the corrector in the two-scale asymptotic method demands the
solution of the cell problem consisting in (i) setting up a boundary-value problem
on the internal boundaries between inclusion(s) and the matrix material in the
translational invariant cell; and, (ii) formulating a periodic boundary-value problem
on the outer boundary of the cell.

Along with FEM and finite differences methods, the following other methods
for constructing solutions to the cell problem are known. In [4 – 6], methods based
on the Eshelby’s transformation strain were applied to analyses of isotropic media
with ellipsoidal inclusions. In [7, 8], media with isotropic components were studied
by applying a method based on the periodic fundamental solutions for isotropic
medium originally constructed in [9]. Because of multipolar expansions used for the
solution of the inner boundary value problem this method is confined to inclusions
of spherical form. Galerkin’s technique for solution of the inner boundary value
problem was used in [10].

Periodic fundamental solutions for media with arbitrary anisotropy were de-
veloped in [11] coupled with the boundary integral equation method (BIEM); that
approach was applied to solution of the cell problem for composites with anisotropic
inhomogeneities and porous anisotropic media in [12, 13], analysis of microstruc-
tural stresses in the matrix material was considered in [14]. Some dynamic problems
were studied in [15] by the same method.
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Scattering of elastic waves in the dispersed composites and porous media are
generally studied at the long wave assumption [15 – 20] when the wave length con-
siderably surpasses the lattice period. Similar scattering problems were studied in
[21, 22] with additional assumption of the constant wave speed in the cell com-
ponents, this is known as the Rayleigh approximation. Non-linear effects related
to wave scattering by inclusions or pores were analyzed in [23 – 25], along with
some recent publications on nonlinear effects caused by scattering of elastic waves
by periodically distributed voids or inclusions [27 – 29].

The principle target of the current research lies in deriving solutions for scat-
tering cross sections for the plane harmonic waves scattered by the periodically
distributed inclusions (or voids) in anisotropic elastic matrix.

2. Principle equations

A homogeneous elastic anisotropic medium is considered. The equations of equilib-
rium can be written in the form:

A(∂x)u = −divxC · ∇xC = 0 (3)

where u is a displacement field. It is assumed that the tensor of elasticity satisfies
the condition of positive definiteness, which is generally adopted for problems of
mechanics.

Applying the Fourier transform:

f∧(ξ) =

∫
f(x)exp(2πix · ξ)dx, ξ ∈ R3 (4)

to Eqs. (3) gives the following symbol of the operator A:

A∧(ξ) = (2π)2ξ ·C · ξ (5)

From the definition of the fundamental solution E, the following formula for the
corresponding symbol can be obtained:

E∧(ξ) = A∧(ξ)−1 (6)

Expression (6) shows that symbol E∧ is also strongly elliptic, positively homoge-
neous of degree -2 with respect to |ξ|, and analytical everywhere in R3\0.

Remark : Fourier inversion of expression (6) and procedures for constructing
the fundamental solution, are discussed in [26].

3. Spatially periodic fundamental solution

Consider a homogeneous anisotropic medium, loaded by periodically distributed
force singularities, located in nodes m of a spatial lattice Λ.

Let ai, (i = 1, 2, 3) be linearly independent vectors of the main periods of the
lattice, so that each of the nodes can be represented in the form:

m =
∑
i

miai (7)
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where L1 are the integer-valued coordinates of the node m in the basis (ai). The
adjoint basis L1(Q,R3⊗R3) is introduced in such a manner that a∗i ·m = mi. The
lattice corresponding to the adjoint basis is denoted by Λ∗.

Now, periodic delta-function corresponding to the singularities disposed at the
nodes of the lattice L1 has the form:

δp(x) = V −1
Q

∑
m∗∈Λ∗

exp(−2πix · x∗) (8)

where VQ is the volume of the fundamental region (cell) Q. Expression (8) defines
the periodic delta-function uniquely.

Substitution of the periodic fundamental solution Ep in Eq. (3) yields:

A(∂x)Ep(X) = δp(x)I (9)

where I is the identity matrix. Looking for Ep also in the form of harmonic series
and taking into account representation (8), it is possible to get:

Ep(x) = V −1
Q

∑
m∗∈Λ∗

0

E ∧ (m∗) exp(−2πix ·m∗) (10)

where Λ0∗ is the adjoint lattice without the zero node. It should be noted that
expression (10) defines a periodic fundamental solution up to an additive (tensorial)
constant.

Lemma 1: The series on the right side of Eq. (10) is convergent in the L1-
topology, defining the fundamental solution of the class L1(Q,R3 ⊗ R3), where L1

is a class of integrable in Q functions with the zero mean value.
Proof of the lemma can be found in [11].

4. Scattering cross sections

For simplicity it will be assumed that the considered medium has only one kind of
uniformly distributed inhomogeneities placed at nodes of the spatial lattice Λ. The
region occupied by an individual inhomogeneity in a cell Q is denoted by Ω.

The two-scale asymptotic analyses being applied to such a medium produces the
following expression for the corrector [12]:

K = −V −1
Q

∫
∂Ω

C · (νY ⊗H(Y))dY (11)

whereY are the “fast” variables, H is the third-order tensorial field, being a solution
of the following boundary value problem:

A (∂Y )H (Y) = 0 Y ∈ Q\Ω
T (νY , ∂Y )H (Y)|∂Ω = −νY ·C (12)

In Eqs. (11) and (12) νY represents a field of external unit normals to the boundary
∂Ω, and the elasticity tensor Ω is defined by:

C = C2 −C1 (13)
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where C2 is referred to the matrix material, and C1 to inclusions. Strong ellipticity
of the tensor C is also assumed.

Lemma 2: Under assumptions stated above, boundary-value problem admits
the unique solution.

Proof of the lemma can be found in [11, 12].
Remark : Supposition that the tensor C in the left-hand side of Eq. (13) is not
strong elliptic, violates proof of Lemma 2.

Now, the solution of the boundary value problem (12) for the traction field can
be constructed by applying boundary integral equation method, giving the following
representation for the desired solution [12]:

(12I+ S)H(Y′) = Hc Y′ ∈ ∂Ω (14)

where Hc is a constant tensor, and S is a singular integral operator resulting from
a restriction of the double-layer potential on the surface ∂Ω. Some of the relevant
properties of operator S are discussed in [13].

Substitution of Eq. (10) for periodic fundamental solutions in the expression for
the operator S allows to obtain a lower (on energy) bound for the corrector; i.e.

Kl = −8π2V −2
Q ×

∑
m∗∈Λ∗

0

(χ̂Ω(m
∗))

2
C ·m∗ ⊗E ∧ (m∗)⊗m∗ ·C (15)

where χ∧Ω is the Fourier image of the characteristic function of the region Ω. An
expression for the upper bound can be obtained similarly [12, 13].

Theorem: Series appearing on the right side of Eq. (15) is absolutely convergent,
provided Ω is a proper open region in Q.
Proof of the theorem can be found in [12, 13].

Remark : Proof of convergence of the series analogous to (15) for very thin
inclusions or cracks, is to be studied separately, as in this case a special asymptotic
analysis is needed.

As was shown in [13, 14], the energy level Wosc of the microstructural highly
oscillating stresses for the case of porous medium is defined by:

Wosc = 12ε0 ·K · ε0 (16)

where ε0 represents the uniform deformation field, and K is the corrector obtained
by Eq. (15).

Similarly, having applied terminology used in quantum mechanics, the scattering
cross-section S for the porous medium can be obtained by the following expression
[15]:

S = (1− f)−1

∣∣∣∣ε0 ·K · ε0
ε0 ·C · ε0

∣∣∣∣ (17)

where f is the porous ratio and C is the elasticity tensor for the matrix material, in
expression (17) the homogeneous deformation field ε0 corresponds to the amplitude
deformation on the wave front:

ε0 =
1

2
(n⊗ a+ a⊗ a) (18)
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In (18) a is the polarization vector of the bulk wave and n is the unit vector normal
to the plane wave front. Polarization vector a in the right-hand side of (18) should
satisfy the propagation condition

(n ·C · n) · a = ρc2a (19)

where c is the speed of the corresponding bulk wave, and ρ is the density.
Remark : In [12-15] some examples for the corrector obtained by Eq. (15), and

corresponding to inclusions or voids of some canonical shapes, are presented.
As can be seen from Eq. (17), the scattering cross-section heavily depends upon

the corrector K (and the applied homogenization technique). For example, Voigt’s
homogenization (see Remark in Sec. 1) necessary leads to absence of any scattering
irrespective of nature of a dispersed composite or porous media, while Reuss ho-
mogenization leads to infinite scattering cross-section for any porous medium. This
underlines the fact of necessity to choose the closest technique for evaluating the
corrector.

5. Conclusions

A two-scale asymptotic analyses method coupled with the spatially periodic funda-
mental solutions is developed for analyzing scattering elastic bulk waves propagating
in anisotropic media with periodic inclusions or voids. Explicit equations are de-
rived for the scattering cross sections and velocities for bulk waves propagating in
spatially periodic media with arbitrary elastic anisotropy.

Finally, the developed two-scale asymptotic analysis coupled with the spatially
periodic fundamental solutions allowed us to construct the converged series for the
corrector tensor and to get the exact expressions for the scattering cross sections.
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